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Introduction
It was Bateson [1] who first described epistasis as a biological process in which gene 
expression at one locus is suppressed by a gene at another locus. Several years later, 
Fisher came up with a non-equivalent definition of epistasis expressed in terms of devia-
tions from a model of additive multiple effects regardless the scale (linear or logarithmic) 
[2]. In this work, we adopt the most commonly used reference to “epistasis”, as refer-
ring to any interaction between genes in which the contribution of one gene to a phe-
notype depends on genetic background. For more details about epistasis, what it means 
and does not mean, its analytic challenges and reproducibility concerns, we refer to [3] 
and more references in [4, 5]. Notably, epistasis research has evolved into a more general 
theory and application framework for the analysis of interactions across and between 
omics strata.

Abstract 

Genes and gene products do not function in isolation but as components of complex 
networks of macromolecules through physical or biochemical interactions. Dependen-
cies of gene mutations on genetic background (i.e., epistasis) are believed to play a role 
in understanding molecular underpinnings of complex diseases such as inflammatory 
bowel disease (IBD). However, the process of identifying such interactions is complex 
due to for instance the curse of high dimensionality, dependencies in the data and 
non-linearity. Here, we propose a novel approach for robust and computationally 
efficient epistasis detection. We do so by first reducing dimensionality, per gene via dif-
fusion kernel principal components (kpc). Subsequently, kpc gene summaries are used 
for downstream analysis including the construction of a gene-based epistasis network. 
We show that our approach is not only able to recover known IBD associated genes 
but also additional genes of interest linked to this difficult gastrointestinal disease.
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Focusing on epistasis detection with data collected in genome-wide association 
studies (GWAS) [6–8], there are still numerous hurdles that when not taken care 
of properly may decrease our belief in the results and may complicate their inter-
pretation [4]. Examples include computational and statistical issues related to the 
high-dimensionality of GWAS data and the corresponding number of mutli-locus 
genotype combinations. Indeed, genome-wide Association Interaction Studies 
(GWAIS) involve hundreds of thousands of genetic markers (usually single nucleo-
tide polymorphisms or SNPs) that need to be interrogated in pairs (or k-tuples). This 
makes correcting for multiple testing a daunting task. It is therefore not a surprise 
that the minority of epistasis detection methods aim for higher-order (more than k = 
2) interactions. One example is BHIT [9], a Bayesian High-order Interaction Toolkit 
for detecting epistatic interactions among SNPs.

In order to deal with problems associated with high dimensional modeling and test-
ing, some researchers have applied filtering approaches to identify and only include 
in the final analysis, SNPs that are most probable to be involved in interactions. For 
example, Hemani and colleagues [10] applied a two stage analysis process. In the first 
stage, an experimental threshold was determined and used to remove SNPs with sig-
nificant additive or dominant effects leaving a smaller set of unique SNP pairs for 
the second stage of the analysis. This is different from early days GWAIS practices 
where only GWAS hits were considered for subsequent epistasis checks. These dif-
ferent practices can be explained by considering the statistical hypotheses underlying 
the epistasis study: detecting interactions above and beyond main effects or detect-
ing multi-locus joint effects (for more details see; Van Steen and Moore [4]). Also 
Pecanka et al. [11] applied a two stage strategy to be able to maximize the chances for 
epistasis signal detection with a reduced set. The reduction was achieved by apply-
ing a two-locus independence test in cases only prior to epistasis screening in cases 
and controls jointly. Several years before, two-locus information had been used by 
Calle et al. [12], who identified potentially interacting genes using a synergy measure 
in stage one and applied a prototype Model-Based Multifactor Dimensionality Reduc-
tion technique (MB-MDR) on the reduced set in stage 2.

Generally, these and similar methods have been successful in some cases but may 
also suffer from epistasis detection power loss. Furthermore, they embed a degree 
of subjectivity due to the choice of filtering or dimensionality reduction technique; 
different choices often leading to quite different results [13]. Thresholds need to be 
selected that may not be driven by biology but may need to be informed by sample 
size. For instance, GenEpi employs a feature extraction process to extract promising 
SNPs within each gene using randomized machine learning techniques. The randomi-
zation, even though increasing the computational burden, was introduced to reduce 
the number of false positives. However, small sample sizes may lead to over-fitting 
in GenEpi and require stringent feature selection thresholds at the expense of false 
negatives and unstable sets of positive signals in replication data [14].

In this work, we propose a novel epistasis detection analysis workflow that (1) takes 
GWAS SNP data as input, (2) develops gene-level summaries via diffusion kernels on 
graphs, and (3) uses these summaries as new units in epistasis (gene-gene) interaction 
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modelling. We illustrate the workflow using a Bayesian modelling framework and 
inflammatory bowel disease as case study.

Materials and methods
Data and data pre‑processing

We used GWAS data on Inflammatory Bowel Disease (IBD) as part of the International 
IBD Consortium (www.ibdgenetics.org) and carried out quality control (QC) proce-
dures as described in Ellinghaus et al.  [15]. SNPs that were in Linkage Disequilibrium 
( r2 > 0.75 ) were pruned out. Only common variants (minor allele frequency > 5% ) 
and those in Hardy-Weinberg equilibrium (p value > 0.001 ) were considered. Then, we 
focused on SNPs potentially relevant for IBD. Specifically, FUMA software [16] was used 
to create eQTL SNP to gene mapping that mapped a SNP to its target gene when the 
association p value was significant in the colon. In addition, specific for the purposes 
of GWAIS, extra QC implementations were made as described in [17], building on rec-
ommendations from [18]. After these QC steps, the data comprised 66,280 individuals 
(32,622 cases and 33,658 controls) and 4398 SNPs.

Furthermore, the dichotomous phenotype (IBD or not) was corrected for popula-
tion structure using the top 7 principal component analysis [19]. As in [15], the top 7 
principal components were used to capture population structure. Trait correction for 
confounders is often done in epistasis research, especially when the targeted modeling 
framework does not accommodate the inclusion of fixed explanatory variables.

Gene–gene interaction analysis workflow with diffusion kernel principal components

Our proposed epistasis detection strategy starts with SNP-to-gene annotation, which 
was carried out using the FUMA software [16] via eQTL mapping. This led to “gene 
files” with sets of SNPs. For those SNPs, missing genotypes were handled via k-nearest 
neighbour (kNN) imputation with k = 10 using the knn.impute function in the bnstruct 
package [20]. The average missingness rate per SNP was 0.062%. Subsequent steps are 
explained in more detail in the following subsections. The entire analysis workflow is 
depicted in Fig.  1. Unless mentioned otherwise, all following data analyses are per-
formed in the statistical software R, version 3.5.1 [21].

Within‑gene synergy

Bivariate synergy was used to construct SNP-based graphs within a gene and the result-
ing within-gene edge weights were used to obtain informed summaries of genes. We 
first discretized (binned) the population-structure corrected phenotype using k-means 
clustering based on the equal-width method implemeted in the discretize function in 
the Infotheo package [22, 23]. Such binning strategies overcome difficulties in informa-
tion gain computations for continuous phenotypes and have been shown to be useful 
for interaction detection between pairs of genetic markers [24]. Second, we calculated 
bivariate synergy Syn between a pair of SNPs as described by [25, 26]. In particular, given 
two SNPs A and B, and the phenotype C, Syn was calculated as follows:

(1)Syn(A;B;C) = I(A,B;C)− [I(A;C)+ I(B;C)]
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where Syn(A; B; C) compares the joint contribution of SNPs A and B to the phenotype 
C with the additive contributions of the individual SNPs. The information gain I(A; C) 
about the phenotype C due to knowledge about SNP A and is defined as:

(2)I(A;C) =H(C)−H(C|A)

(3)I(A,B;C) =H(C)−H(C|A,B)

Fig. 1  Novel epistasis detection workflow: SNPs are mapped to respective genes followed by imputation 
for missing genotypes. Interaction information between SNPs allocated to the same gene is used to 
compute diffusion kernels and graphical within-gene network structures. Data reduction via kernel principal 
component analysis gives gene summaries (representations) that are submitted to an epistasis detection 
model of choice (here, for illustration, a Bayesian model). Gene-gene interactions are graphically represented 
via a gene-level statistical epistasis network and interpreted
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Here, H(C) denotes the entropy of C and H(C|A) (respectively H(C|A, B)) refers to the 
conditional entropy of C given knowledge of SNP A (and B). The entropy and condi-
tional entropy of C are defined as:

with p(c) the probability that an individual has phenotype C = c . Likewise, p(c|a) is the 
probability of having phenotype C = c given genotype a for SNP A.

Within‑gene network analysis

For the construction of within-gene networks, SNPs were used as nodes and bivariate 
synergy between two SNPs provided edge weights. The “Maximum Relevance Minimum 
Redundancy” algorithm in the minet package in R [27] was used for meaningful node 
selection. In particular, the bivariate synergy matrices computed before were subjected 
to the mrnet function. The mrnet algorithm then computes a score that is used to rank 
the set of SNPs (vertices). For a particular target Y (each SNP is used as a target in turn), 
the algorithm starts by selecting the SNP S = Xi with the highest synergy with Y. Then 
SNP Xj with high synergy with Y and low synergy with Xi is selected. The algorithm 
updates S, the set of selected variables, by choosing the SNP:

that maximises the score sj = uj − rj where uj is the relevance term uj = I(Xj;Y ) and rj 
is the redundancy term:

The SNP network is then inferred by removing edges using an incremental search algo-
rithm [27, 28]. This resulted in a reduced gene SNP set that was analysed with the igraph 
R package [29]. Several network properties were recorded for each within-gene network 
[30] including density and mean distance. A network’s density is defined as the ratio of 
actual versus potential connections. Mean distance is defined as the average of short-
est paths between nodes. As a network connectivity measure, we chose transitivity i.e. 
capturing the tendency of network edges to form triangles via the ratio between the 
observed number of closed triplets and the maximum possible number of closed triplets 
in the network.

Diffusion kernel principal components

Diffusion kernels were constructed over genotypes based on matrix exponentiation as 
described by [31, 32]. Using the adjacency matrix with bivariate synergies (Syn) computed 

(4)H(C) =
∑

c

p(c)log
1

p(c)

(5)H(C|A) =
∑

a,c

p(a, c)log
1

p(c|a)

(6)XMRMR
j = argmax

Xj∈V \S

(uj − rj)

(7)rj =
1

|S|

∑

Xk∈S

I(Xj;Xk)
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in “Within-gene synergy” section, as off-diagonal weights and zeroes on the diagonal the 
Laplacian for each gene’s graph G was defined as:

Here, i refers to SNPi and j to SNPj , and Wij = Syn(SNPi; SNPj;C) . With this Laplacian, 
the diffusion kernel is defined as

with β is a parameter that regulates the degree of “diffusion”. Note that KL is a matrix 
exponential. A β value of zero gives an identity diffusion kernel matrix. We generated 
101 diffusion kernels KL for β ranging from 0 and 10 (increments of 0.1) and took the 
average of the 101 KL to derive the final kernel matrix KL.

Assuming G to be a n× p genotype matrix, with n individuals and p SNPs allocated to 
the same gene, and GT its transpose, the final gene-specific kernel of interest was defined as

Notably, K is a n× n kernel matrix that has information about gene-level similarity 
between individuals, as well as joint effects of SNPs on the trait within each gene. We 
then centered each kernel matrix, performed an eigen decomposition using the RSpec-
tra package [33], and extracted the first principal component as a gene summary. The 
obtained gene constructs were considered as new units of gene-level epistasis analyses.

Detecting gene–gene interactions

An abundance of epistasis detection approaches with GWAS data exist. The vast major-
ity of these approaches model or test for interactions at the SNP-level, assuming discrete 
data as input for their algorithms. In contrast, our proposed workflow assumes non-dis-
crete input data i.e., one continuous variable per gene. The epistasis detection problem with 
GWAS data is consequently turned into a statistical problem that aims to at least capture, 
but preferentially detect, interactions between pairs of variables. Here, as an illustration, we 
used the Bayesian semi-parametric regression approach of [34] to infer non-linear gene-
gene interactions, implemented in the NLinteraction R package. As gene explanatory vari-
ables for an individual i, we used the first kernel principal component Xij1 for each gene j1 
(see previous section). Genes and gene-gene interactions were selected on the basis of a 
so-called Posterior Inclusion Probability (PIP). This is a value for each effect of interest that 
indicates how likely it is to be included in the true model. Lesaffre and Lawson reported 
that PIP can “replace classical p values” [35]. See [36–38] for more information and applica-
tion of PIP.

In particular, main effects and 2-way interaction effects were modelled as follows, exem-
plified for two genes j1 and j2 : The main effects of gene 1 ( j1 ) were modelled as in Eq. (11).

and the interaction effect between gene 1 and gene 2 were modelled as in Eq. (12).

Lij =

{
Wij , for i �= j
−
∑n

l=1Wil , for i = j.

(8)KL = eβL

(9)K = GKLG
T

(10)f (Xj1) = X̃j1βj1



Page 7 of 18Walakira et al. BMC Bioinformatics           (2022) 23:57 	

with X̃j1 = g1(Xj1) and X̃j2 = q1(Xj2) , where g(.) and q(.) are natural basis functions of 
Xj1 and Xj2 respectively and X̃j1j2 = g1(Xj1)q1(Xj2) the basis expansion of the interaction 
between Xj1 and Xj2 , as explained in [34].

The complete model formulation makes the following assumptions for the response 
Yi for individual i, i : 1 . . . n , n the number of individuals:

Here, p refers to the number of genes, and k is a number sufficiently large such that all 
exposure effects can be captured by the model.

At the core of Bayesian modelling lies choosing a prior distribution, here for βj and 
βj1j2 in order to enforce sparsity. For this analysis, we kept the default settings of the 
authors: spike and slab priors were used to shrink parameters to zero hereby reducing 
the dimensionality of the data. In particular:

where S is a subset of 1,2, ..., p and P(ζjh) = τ
ζjh

h (1− τh)
1−ζjh1(Ah �⊂ Am∀m or Ah = {}) 

where Ah = {j : ζjh = 1} and ζ = {ζjh} , a matrix of binary indicators of which genes and 
interactions are included in the hth function in the model. Spike was considered to be a 
point mass at zero i.e. P(β = 0) > 0 , and slab, ψ() , a multivariate distribution centered 
at 0 with covariance �β (estimated by empirical Bayes) as a diagonal matrix with σ 2σ 2 
on the diagonals. Both τh and �β control the amount of shrinkage. In order to assess 
convergence, we kept track of σ 2 as shown in the trace plot (see Additional file 3: Figure 
S3a).

Gene‑level epistasis visualisation and gene annotation

Genes with a marginal PIP greater than zero and unique genes involved in interac-
tions with a PIP greater than zero were retained for network analyses. In particular, 
the unique sets of genes thus obtained were submitted to GeneMANIA to visualize 
and interpret inter-connectivity between identified genes [39]. Furthermore, unique 
genes involved in gene-gene interactions ( PIP > 0 ) were propagated over a inBio net-
work [40]. The inBio network is a protein–protein interaction network that integrates 
different studies and interaction types into a single evidence based integrated score 
for each gene/protein pair. To decipher the roles of highlighted genes as well as their 

(11)
f (Xj1 ,Xj2) =X̃j1βj1 + X̃j2βj2

+ X̃j1 X̃j2βj1j2

(12)

Yi ∼ Normal(f (Xi, σ
2))

f (Xi) =

k∑

h=1

f (h)(Xi)

f (h)(Xi) =

p∑

j1=1

X̃ij1β
(h)
j1

+

p∑

j1=2

∑

j2≤j1

X̃ij1j2β
(h)
j1j2

(13)P(β
(h)
S |ζ ) =


1−

�

j∈s

ζjh


δ0 +



�

j∈s

ζjh


ψ(β

(h)
S )
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involvement in IBD pathology, the gene annotation data base DAVID [41, 42] and 
DisGeNET [43, 44] were interrogated.

Results
SNPs were physically mapped to respective genes yielding a total of 878 genes (“gene 
files”). These genes were spread across 22 chromosomes (no sex chromosomes). We suc-
cessfully calculated kernels for 496 genes. The computation of kernels was restricted to 
genes with three or more SNPs mapped to the respective gene.

Figure 2a–c display the within-gene networks between SNPs that were annotated to 
AHSA2, NOTCH4 and SLC22A4 specifically. These exemplifying genes were picked up 
by the adopted Bayesian modelling strategy (interaction PIP > 0 ) and suggest that gene 
size (number of SNPs) was not the determining factor for epistasis detection. In general, 
within gene networks differed by genes (Fig. 3). Genes such as PARK7, CD40, NUCKS1, 
MST1R and SLC22A4, known to be associated with IBD (CD or UC) showed higher-
end densities (Fig. 3).The number of SNPs mapped to a respective gene varied from 140 
SNPs for the HLA-K gene to 2 SNPs for genes such as ZNF7 and TRPT1. The majority 
of genes had less than 20 SNPs, distance-wise mapped to them (Fig. 4b). There was no 

Fig. 2  Within-gene bivariate synergy networks (“Within-gene network analysis” section). Number of SNPs 
varied among genes

Fig. 3  Frequency distributions of within-gene network properties. a Density, b mean distance, and 
transitivity (see Additional file 3: Figure S2c). Red dots show top genes(PARK7, CCDC116, CD40, NUCKS1,IP6K2, 
CNTFR, MST1R, SLC22A4) ranked by density. The same genes are highlighted for b (mean distance), and 
additional file 3: Fig S2c (transitivity). See Additional file 1: Table S1
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obvious relationship between the number of SNPs per main effects gene ( PIP > 0 ) and 
the corresponding median synergies (Fig. 4a).

Genes with a marginal or interaction PIP greater than zero were used to construct 
interaction networks in GeneMANIA, searched on 7th December 2021. For Fig. 5, the 
search term was the list of all genes with PIP greater than 0 from the main effects model 
(see Additional file 2: Table S2). For Fig. 6, the search term was the unique set of genes 
whose interaction had a PIP greater than zero (Table 1). The objective was to retrieve 
novel connections between our own identified genes and other genes given known inter-
action information in curated databases.

Furthermore, we searched for external evidence for association of our selected genes 
with IBD, Crohn’s Disease (CD) or Ulcerative Colitis(UC) using DAVID and DisGeNET. 
Genes SLC22A4, OTUD3, PARK7, NOTCH4, GPR35, DAP, UBA7, MST1, MST1R, CD40, 
TAP2, NICNI, RGS14, LINCO1475, GBAP1, NUCKS1, HCG23, CCDC88B, HEART3, 
and ERAP2, have been previously associated with IBD, CD or UC. Of the genes involved 
in 2-way interactions (Table 1), seven genes namely LINCO1475, TAP2, RGS14, OTUD3, 
SLC22A4, NICN1 and NOTCH4 have already been associated with IBD, CD or UC. From 
the network (Fig.  6), genes MAP1LC3A, UBR4 and CNTFR are attractive for further 

Fig. 4  SNP-gene properties. a The log median synergy (Syn) against the number of SNPs per PIP > 0 main 
effect gene (i.e. selected gene); b frequency of gene sizes for main effects genes identified via PIP > 0 ; The 
red vertical line indicates gene size of 20. For the histogram in b, a log transformation of the number of SNPs 
was taken for better presentation

Table 1  Second-order gene–gene interactions and their respective posterior inclusion probabilities 
(PIP)

Gene 1 Gene 2 PIP

LINC01475 NIT1 0.0263

JAZF1.AS1 TAP2 0.0090

LIME1 NICN1 0.0075

LRRC56 OTUD3 0.0071

AHSA2 NOTCH4 0.0025

CNTFR EIF2S2P3 0.0025

MAP1LC3A RGS14 0.0025

CDC37P1 OIP5.AS1 0.0015

CDC37P1 SLC22A4 0.0005

OIP5.AS1 SLC22A4 0.0005

DR1 MAP1LC3A 0.0003
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Fig. 5  Gene interaction network for main genes effects as in Additional file 2: Table S2. Light-blue dots refer 
to interrogated genes; orange dots are genes retrieved from the GeneMANIA databases further shaping the 
interaction network.

Fig. 6  Gene interaction network for genes identified via interaction PIP > 0 (Table 1). Light-blue dots refer 
to interrogated genes; orange dots are genes retrieved from the GeneMANIA databases further shaping the 
interaction network. For PPI network, see Additional file 3: Figure S1
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investigation. Their degree (number of connected edges) and nature of connections in 
which they are involved warrant in-depth investigation of their potential roles in IBD 
pathology. For instance, MAP1LC3A has degree 5, while CNTFR has a degree of 8, with 
the both genes being central to two clusters of genes in the network. Also, MAP1LC3A 
has been implicated in related diseases e.g. in cancers of the gastro intestinal system [45, 
46]. Gene CNTFR has been implicated in rheumatoid arthritis, a chronic inflamatory 
disorder [47], and UBR4 in anorectal malformations and stomach cancer [48, 49].

Discussion
High-throughput technologies have facilitated multi-omics profiling of individuals. 
Since the first complete sequence of the human genome, several genome-wide associa-
tion studies comparing cases and controls have emerged. These studies have been suc-
cessful to obtain a better understanding of biological underpinnings of complex diseases 
such as Inflammatory Bowel Disease (IBD), a highly prevalent disease that is character-
ized by chronic inflammation of the gastrointestinal tract [50]. According to DisGeNet 
and the NHGRI-EBI GWAS Catalog, over 170 genes are reported to be associated with 
inflammatory bowel diseases. Despite the appreciable number of GWAS findings, only 
a few of these have shown immediate impact in clinical practice. This is not surpris-
ing. GWAS only offer one view of the complexity of an individual’s health. Interactome 
analyses offer another view. The interactome refers to the entire complement of inter-
actions between DNA, RNA, proteins and metabolites within a cell. In this work, we 
have focused on one particular type of interactions, namely “DNA–DNA” interactions, 
using genetic markers from GWAS, in particular SNPs, as vehicles. The context is thus 
genome-wide association interaction studies (GWAIS), building on GWAS and aiming 
to identify interacting SNPs in relation to a phenotype of interest.

Several reviews exist on GWAIS. These focus on the definition of epistasis [5, 6], on 
the vast amount of analytic approaches that exist [3, 6, 51] on the difference between 
capturing and detecting epistasis [52] or on how to adapt the analysis workflow to 
increase our belief in statistical interactions with SNPs and to maximize translation 
opportunities [4], amongst others. The latter reference highlights the many issues that 
still exist for GWAIS analyses, including replication issues at the SNP level or interfer-
ence by linkage disequilibrium patterns in the data. Gene-level epistasis analysis may 
be better suited towards increased interpretability and replication across studies. Also, 
they may be the road to travel by for epistasis detection with GWAS SNP data when mil-
lions of SNPs need to be screened. In practice, such enormous datasets require adopting 
filtering or dimensionality reduction approaches. These may involve the incorporation 
of prior biological knowledge (for instance, restricting the search space to SNP-level 
interactions that involve known gene-level biological interactions) [53], or a transforma-
tion of SNP-level to gene-level analysis via tissue-specific SNP induced estimates of gene 
expression [54]. To our knowledge, one of the first gene-level epistasis analysis methods, 
starting from GWAS SNPs and creating gene-level summaries, is gene-based MDR [55]. 
For each gene, the best within-gene SNP interaction model is considered to be a gene-
level binary predictor for the trait and serves as input to a second run of MDR to find the 
best gene-level interaction model.
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In this study, we identify epistasis signals via GWAS data by creating SNP sets allo-
cated to the same gene and endowing the SNP sets with a network structure. The net-
work structure allows information to be diffused over the corresponding graph and 
summarizing the SNP sets with diffusion kernel PCs (for instance, the first such compo-
nent for each gene). The derived gene summaries serve as input to gene-level interaction 
models. In what follows, we motivate the components of this workflow and show how 
elements may be customized to accommodate different application settings.

Several SNP-to-gene mapping strategies exist. To exemplify the analysis workflow, we 
chose the most commonly used mapping method based on genetic distance with the 
FUMA software. Adopting such a genomic proximity mapping requires making addi-
tional choices of the maximum allowable distance (f.i., taking the closest gene or genes 
within a number of kbps of the index SNP). Alternatively, SNPs may be mapped to genes 
in a functional way. One example is eQTL mapping. Depending on the mapping strategy, 
several useful SNPs may be eliminated from the analysis. On the other hand, different 
opportunities to define a graphical structure between the SNPs annotated to the same 
gene may emerge. For instance, with genomic proximity mapping the sequence of SNPs 
on the genome can be used (LinearNet). Network edges may also be defined on the basis 
of linkage disequilibrium patterns between SNPs (LDNet). These approaches have been 
investigated before in the context of Type II diabetes [56]. With eQTL functional map-
ping, SNPs mapped to the same gene may be connected to each other when they act as 
each other’s modifier in an eQTL epistasis relationship. The latter would imply the crea-
tion of SNP-set modules that are not disease-trait informed, but that can be regarded as 
“functional modules”.

The use of entropy measures in GWAS and epistasis research is not new. For instance 
[57] considered Ŕenyi entropy based single locus and two-locus association testing. A 
few years later, entropy-based test statistics for gene-gene interaction studies were 
reviewed in [58]. This study highlights the wide diversity of such measures. It should be 
noted that entropy-related concepts may be used differently by different authors as is the 
case for “information gain” (for example: [59–61]). Also, entropy-based measures may 
capture joint multi-locus effects [61] or purely interactive effects (no influence of main 
effects) as is the case in [62]. Furthermore, most software tools producing entropy based 
estimators require complete data. For this reason, we included an additional imputation 
step in the analysis protocol. That is, for available SNPs in the data, missing genotypes 
were imputed via k-nearest neighbors. More elaborate imputation strategies based on 
haplotypes or linkage disequilibrium exist and are commonly used in GWAS context but 
were not considered in this pilot analysis workflow. Alternatively, apart from being use-
ful in testing, entropy-based measures can also be used in screening as was done in ear-
lier work of ours [59]. In our analysis pipeline, we computed bivariate synergies between 
SNPs, not between all SNPs as in [59] but only between those that were annotated to the 
same gene. Furthermore, as only a handful of entropy based estimators for association 
with a quantitative trait are available (see references in [58]), we chose to discretize our 
non-binary trait that had been adjusted for confounding variables. It led to within-gene 
networks of SNPs with edge weights induced by the adopted synergy measure.

We preferred to generate weighted within-gene networks rather than binary networks 
to avoid specifying a synergy threshold that may well need to be gene-dependent, and 
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to have more refined diffusion of information. The beauty of our implemented strategy 
over LDNet and LinearNet is that network edges contain phenotype informed informa-
tion. Furthermore, this approach is not a classical screening step that would reduce the 
number of subsequent SNP-based epistasis tests, in which case additional adjustments 
would be needed to account for elevated Type I errors caused by dependent testing and 
screening analysis stages.

In our approach, inspired by [63], we employed kernel PCA on a “sandwich” kernel 
matrix which contains a diffusion kernel as “filling”. The dimensions of the “sandwich” 
kernel are determined by the available number of individuals in the study. In GWAIS 
we wish to have sufficiently large sample sizes in order to boost the power for epistasis 
detection. The downside of large data sets is that it imposes challenges when computing 
principal components. For instance, for the IBD consortium data we used in this study, 
with over 60,000 individuals, special measures had to be taken when computing the ker-
nels. In particular, we adhered to parallel computing at each stage of matrix multiplica-
tion, and also worked on partitions with at least 500GB of memory.

The kernel PCs computed per gene reduce to classical PCs when no association 
between SNPs within a gene is used. Indeed, in that case, β = 0 and the filling expβL in 
the “sandwich” kernel reduces to the identity matrix (first term in the Taylor expansion). 
Using the average of the expβL matrices retrieved from several β values is better than 
using a single fixed β value for every gene as it enables the structure of different genes 
to dictate what the final kernel matrix would be. An area for further research is to better 
tune the β values especially for studies with large sample sizes for which eigen decompo-
sitions tend to be computationally demanding in the R software. Although the number 
of kernel PCs can be chosen using cross-validation, we chose the first kernel PC as main 
representative for each gene, giving rise to a single score for each gene per individual.

Notably, unlike gene-based MDR, we are not limiting gene summaries to a single SNP-
level epistasis model. Rather, in our analysis workflow we possibly use an entire network 
structure between SNPs allocated to the same gene to summarize the gene. As suggested 
before, our approach is flexible in that the network structure may use trait information 
or not. When a within-network structure is absent, the corresponding gene summary 
boils down to classical (first) principal component derived from the gene set. Using prin-
cipal components to summarize SNP information within a gene has been used before 
in gene-level interaction testing and genomewide association settings [64]. In the latter 
reference, as an alternative, trait information is used while summarizing a SNP set via 
partial least squares. Whereas [64] the first components are taken as gene summaries, in 
[65] genes are summarized by principal components that explain at least 80% of the vari-
ation. In contrast, in [66], SNP sets mapped to a gene pair are summarized by a so-called 
Eigen-Epistasis component. It stands for the linear combination of all respective SNP-
SNP interactions that is the most correlated with the phenotype. We did not compare 
our implemented workflow with aforementioned existing methods, as only gene-based 
MDR also uses within-gene interaction information to derive gene summaries and since 
(SNP-based) MDR, on which it relies, suffers from several drawbacks as outlined in [67].

Bayesian models have several advantages, perhaps one of the most apparent one is that 
they naturally accommodate the inclusion of prior biological knowledge about associa-
tions. Several classes of such models for epistasis detection exist, including the BEAM 
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model as reviewed and extended in [68]. These models were shown to have rather low 
computational complexities. Here, we used gene representative kernel PCs in conjunc-
tion with a novel semi-parametric Bayesian model [34], while making inferences about 
gene and gene-gene interaction effects via Posterior Inclusion Probabilities (PIP), rather 
than via p values. GWAIS p values need to be adjusted for a huge number of multiple 
tests that may exhibit complex dependency structures between them. This imposes 
unresolved challenges of potentially high false negative rates and at the same time false 
positive rates that may not be acceptable [69]. It should be noted though that the adop-
tion of Bayesian methods do not necessarily avoid the need for multiple testing correc-
tion, as was pointed out in [70]. In either case, in the current workflow, we took a PIP 
threshold of zero meaning that any gene or gene-gene interaction with a PIP strictly 
larger than zero was considered to be of predictive value to the phenotype and was 
included in downstream analyses. By no means should PIPs be interpreted as measures 
of association strength. Another motivation to work within a Bayesian paradigm is that 
in our workflow, only a relatively small number of variables needed to be mined (theo-
retically, as many variables as there are genes). Often, the advantages of some classes of 
Bayesian models in epistasis research are downplayed by the necessity to first filter the 
data and to reduce its dimensionality. Working with gene summaries as we have defined 
them naturally deals with this issue.

The final step of the analysis workflow involved interpretation of findings. All epistasis 
results were visualized in a gene interaction network and analyzed using network theory. 
The network may be the direct result of inferred interactions, but may also be the result 
of consulting external resources with “interaction” information. One such resource 
is GeneMANIA. By entering genes that were analytically identified as putative gene-
gene interaction and/or as putative main effect (via PIP > 0 ), GeneMANIA will build 
an entire network around them. Alternatively, identified genes can be propagated on a 
molecular network such as inBio, STRING, as in [71]. This bigger context may highlight 
interesting genes that were not directly identified via our epistasis detection models. It 
may highlight novel disease gene clusters and shed additional light on disease-related 
biological mechanisms. Notably, several molecular interaction databases exist each of 
them having differential performance, for instance in retrieving relevant disease genes 
[71]. Hence, experimental validation of promising results remains inevitable but may 
not always be feasible or accepted without replication evidence. Unfortunately, cur-
rently, there is no consensus in what replication means or should mean in the context of 
GWAIS [72].

Our analysis workflow applied to IBD spotlighted several known IBD associated 
genes and identified several gene-gene interactions. In practice, 41% of the 49 genes 
highlighted by our approach (PIP > 0 ) could be traced back to previous reports about 
associations with IBD (Crohn’s, Ulcerative Colitis). Additional work is needed to inves-
tigate indirect links with IBD phenotypes. Comparing networks derived from analytic 
main effects and epistasis modelling complements the picture. For instance, Figs. 5 and 
6 underscored three genes, namely MAP1LC3A, RGS14 and CNFTR. No association evi-
dence between these genes and IBD could be found. Regardless, from a network point of 
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view these 3 genes are interesting and worthwhile to follow-up in an attempt to deter-
mine their potential role in IBD pathology.

All of the above shows that the trait-informed dimensionality reduction step in our 
novel epistasis detection analysis workflow enhances the detection of gene-gene inter-
action effects and can detect genes associated with the phenotype. It fosters novel 
think tank paths to spur medical innovations. Additional optimizations at multiple 
layers of the analysis protocol are possible (as discussed) and are believed to further 
enhance the performance of our approach.
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